Figure: 16 TAC §25.511(h)(2)

Percentile	50 th	60 th	70 th	80 th	90 th	100 th
PRF _{Year 1}	90	92	94	96	98	100
PRF _{Year 2}	88	90	92	94	96	98
PRF _{Year 3}	92	93	94	95	96	97

Test Period 1 -- The generation resource achieved a PRF of 92 and an ARF of 1.0. Its PRF is above the median value ($PRF_{50} = 90$) but below the optimal performance standard ($PRF_{90} = 98$). Therefore, its completion bonus grant payment for this test period would be:

$$[1 - 10(1 - 1)^{2}] \left[\frac{1}{4} + \frac{3}{4} \left(\frac{92 - 90}{98 - 90} \right) \right] (\$1,200,000) = \$525,000$$

Test Period 2 -- The generation resource achieved a PRF of 85 and an ARF of 1.0. Its PRF is below the median value ($PRF_{50} = 88$). The applicant receives no grant payment for this test period.

Test Period 3 - The generation resource achieved a PRF of 96 and an ARF of 0.80. Its PRF is equal to the optimal performance standard ($PRF_{90} = 96$), but its payment will be discounted as a result of its ARF being less than 0.9. Its completion bonus grant payment for this test period would be:

$$[1-10(1-0.80)^2](\$1,200,000) = \$720,000$$